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Anxiety disorders (AD) are associated with altered connectivity in large-scale intrinsic brain networks. It remains uncertain how
much these signatures overlap across different phenotypes due to a lack of well-powered cross-disorder comparisons. We used
resting-state functional magnetic resonance imaging (rsfMRI) to investigate differences in functional connectivity (FC) in a cross-
disorder sample of AD patients and healthy controls (HC). Before treatment, 439 patients from two German multicenter clinical trials
at eight different sites fulfilling a primary diagnosis of panic disorder and/or agoraphobia (PD/AG, N= 154), social anxiety disorder
(SAD, N= 95), or specific phobia (SP, N= 190) and 105 HC underwent an 8min rsfMRI assessment. We performed categorical and
dimensional regions of interest (ROI)-to-ROI analyses focusing on connectivity between regions of the defensive system and
prefrontal regulation areas. AD patients showed increased connectivity between the insula and the thalamus compared to controls.
This was mainly driven by PD/AG patients who showed increased (insula/hippocampus/amygdala—thalamus) and decreased
(dorsomedial prefrontal cortex/periaqueductal gray—anterior cingulate cortex) positive connectivity between subcortical and
cortical areas. In contrast, SAD patients showed decreased negative connectivity exclusively in cortical areas (insula—orbitofrontal
cortex), whereas no differences were found in SP patients. State anxiety associated with the scanner environment did not explain
the FC between these regions. Only PD/AG patients showed pronounced connectivity changes along a widespread subcortical-
cortical network, including the midbrain. Dimensional analyses yielded no significant results. The results highlighting categorical
differences between ADs at a systems neuroscience level are discussed within the context of personalized neuroscience-informed
treatments. PROTECT-AD’s registration at NIMH Protocol Registration System: 01EE1402A and German Register of Clinical Studies:
DRKS00008743. SpiderVR’s registration at ClinicalTrials.gov: NCT03208400.
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INTRODUCTION
Anxiety disorders (AD), including panic disorder and/or agorapho-
bia (PD/AG), social anxiety disorder (SAD), and specific phobia (SP),
are among the most common mental disorders. Their 12-month
prevalence lies between 14.0% (EU rates; [1]) and 18.1% (US rates;
[2]), posing a substantial challenge to both patients and society [3].
Modern psychopathological models advocate for a transdiagnostic
viewpoint, emphasizing underlying similarities that transcend
diagnostic labels [4]. Notably, ADs have common developmental
patterns, risk factors, symptoms, and treatment strategies, with
exposure-based cognitive behavioral therapy recommended as the
primary approach. However, the underlying nature of the
commonalities and differences, including phenotypic homo- or
heterogeneity of neural signatures, is still not well-understood [5].
ADs are characterized by dysfunctional threat-processing

mechanisms that involve specific brain regions. Pre-clinical

research, including animal studies, has consistently identified
key areas within the defensive system, with high translational
value for understanding the neurobiological basis of anxiety
disorders [6, 7]. Meta-analyses using multimodal neuroimaging
highlight common neural features in internalizing disorders,
especially ADs [8–10]. A meta-analysis with over 15,000 partici-
pants identified shared structural alterations in the dorsal ACC and
bilateral insula [8]. Further, heightened activity is observed in the
salience network, particularly the anterior cingulate cortex (ACC)
and insula, alongside decreased activity in prefrontal and
executive control regions. Task-based fMRI studies have shown
increased activation in anxiety-related areas, such as the bilateral
insula and medial prefrontal cortex [10]. Common neural patterns
for mood and anxiety disorders include reduced activity in frontal
areas that exert inhibitory functions and increased activity in
salience-processing networks (amygdala, ACC, and thalamus; [8]).
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However, these meta-analyses predominantly emphasize shared
neural characteristics, often overlooking distinctions between
diagnoses.
Resting-state fMRI offers a paradigm-free measure of intrinsic

brain connectivity, positioning it as a temporally stable character-
istic of individuals and potential biomarker [11]. Yet, studies on
resting-state functional connectivity (rsFC) as a function of
diagnosis and/or psychopathology related to AD are limited. The
most striking results show connectivity changes between limbic
and associated regions (e.g., amygdala and insula) as well as
regions associated with the default mode network, salience
network, and central executive network [5, 11–13]. Findings are,
however, heterogenous, possibly due to different MRI techniques
and analysis methods. Many studies also lack statistical power [5].
Despite indications of both shared and distinct rsFC patterns
among ADs, comprehensive and direct cross-disorder compar-
isons are rare, making the true nature of shared neural markers in
transdiagnostic models debatable.
We aimed to analyze rsFC variations between different ADs and

healthy controls (HC) using a direct cross-disorder comparison on
a sample covering PD/AG, SAD, and SP, sourced from two major
multicenter studies (PROTECT-AD and SpiderVR). Based on
previous studies [8–13], we hypothesized variations in connectiv-
ity within the defense mobilization network (comprising regions
from both the executive control and salience networks, such as
the medial prefrontal cortex, amygdala, ACC, insula, and
thalamus), including the periaqueductal gray (PAG), and prefrontal
regulatory regions. We explored differences between AD patients
and HC in general, as well as between specific diagnoses (in
the Supplemental Material).

METHODS
The analysis is part of the national research consortium “Providing Tools for
Effective Care and Treatment of Anxiety Disorders” (PROTECT-AD),
sponsored by the German Federal Ministry of Education and Research.
Patients with PD/AG, SAD, or SP diagnoses from eight German university
outpatient clinics participated (details in [14, 15]). At baseline, 468 patients
and controls underwent rsfMRI. Due to limited SP representation, we
added 174 SP (spider phobia) patients from the SpiderVR trial, funded by
the German Research Foundation within the “Fear, Anxiety, Anxiety
Disorders” Collaborative Research Center (CRC TRR 58, project C9; details in
[16, 17]). This trial used the same neuroimaging protocols, including rsfMRI,
at two sites also involved in PROTECT-AD.

Participants
Data sets of 439 AD patients and 105 HC patients after quality control were
included (see Supplemental Material for details). PROTECT-AD patient
eligibility was based on the Diagnostic and Statistical Manual of Mental
Disorders (DSM 5th edition) criteria for primary diagnoses of PD, AG, SAD,
or multiple SP. For SpiderVR, eligibility hinged on the DSM (IV-TR) criteria
for spider phobia. HC participants had no history of mental illness or a
neurological or medical condition preventing MRI.
Participants provided written consent after receiving a full description of

the study protocol. All ethics committees of the participating centers
approved the study. A patient flow diagram is available in Fig. 1, while
demographic and clinical data can be found in Table 1.

Clinical assessments
In PROTECT-AD, diagnoses were made by trained clinicians using a
standardized computerized interview based on DSM-5 criteria [16]. For
SpiderVR, the DSM-IV structured clinical interview was employed [17].
Differences between DSM-5 and DSM-IV did not affect decisions regarding
specific phobia diagnoses. Selected measures for analysis included:
Structured Interview Guide for the Hamilton Anxiety Rating Scale (SIGH-
A; [18]), Clinical Global Impression Scale (CGI; [19]), Panic and Agoraphobia
Scale (PAS; [20]), Liebowitz Social Anxiety Scale (LSAS; [21]), Dimensional
Specific Phobia Scale for DSM-5 (DSM5-SP; [22]), Anxiety Sensitivity Index
(ASI-3; [23]), Beck Depression Inventory (BDI-II; [24]), and Spider Phobia
Questionnaire (SPQ; [25]).

PROTECT-AD participants completed an additional questionnaire asses-
sing the course of anxiety during scanning and maximal anxiety to test the
state anxiety associated with the procedure (see [26] for more details).

MRI Acquisition
MRI scans were performed at eight clinical sites using seven 3 Tesla MRI
scanners (3x Siemens TrioTim, 1x Siemens Verio, 1x Siemens Prisma, 1x
Siemens Skyra, 1x Philips Achieva). Two sites shared one scanner. SpiderVR
and PROTECT-AD used identical scanner sequences. Data quality assurance
was achieved through harmonized scanner sequences, trained personnel,
frequent site visits, teleconferences, and rapid online data quality checks
with direct feedback to each center (see Supplemental Material for more
information).
Functional images at rest were obtained after the structural images and

before the task-based images in both trials. This was done using an
8-minute T2-weighted gradient-echo echo-planar imaging (EPI) sequence,
which is sensitive to BOLD contrast (TE= 30ms, TR= 2000 ms, flip angle
90°, matrix size 64 × 64 voxels, voxel size 3.3 × 3.3 × 3.8 mm³, slice thickness
3. 8 mm, slice spacing 0.38mm, field of view (FOV)= 210mm, 33 slices
scanned in order interleaved ascending with phase encoding direction
A≫ P; due to technical incompatibility, a TE= 29ms had to be used on the
Siemens Prisma, only 31 slices were acquired on the Siemens Verio). The
slices were positioned transaxially parallel to the intercommissural (AC-PC)
plane and tilted 20° to reduce magnetic susceptibility artifacts in prefrontal
areas. Participants were instructed to remain still and close their eyes. The
light in the MRI scanning room was turned off.
A high-resolution structural image was obtained using a three-

dimensional T1-weighted magnetization-prepared fast gradient echo
sequence (3D MPRAGE) in the sagittal plane (TE= 2.26ms, TR= 1900ms,
inversion time (TI)= 900ms, flip angle 9°, matrix size 256 × 256 voxels,
voxel size 1 × 1 × 1mm, slice thickness 1.0 mm, FOV= 256mm, 176 slices;
due to technical incompatibility, a TE= 2.28ms, TR= 2130ms, and flip
angle= 8° had to be used on the Siemens Prisma; total duration: 4:30min).
Additional fMRI tasks were performed that are not reported here (see [16]
and [14] for details of the study protocol). A fixed order was followed
(T1, resting state, tasks).

Data Preprocessing
MRI data were preprocessed using CONN functional connectivity toolbox
19.b (http://www.nitrc.org/projects/conn) implemented in MATLAB,
R2019b (MathWorks Inc. MATLAB. Natick, Massachusetts) and SPM12
(Statistical parametric mapping: the analysis of functional brain images.
Elsevier). The first five scans of the total 237 volumes were removed from
the data before preprocessing. Standard preprocessing steps included
realignment/motion correction, slice timing, identification of outlier
volumes (≥0.5 mm motion or ≥3 standard deviations of global signal
change), direct segmentation and normalization to the standard Montreal
Neurological Institute (MNI) brain template, and spatial smoothing (full
width at half maximum= 8mm). Denoising was performed using temporal
bandpass filtering (0.008–0.09 Hz) and ordinary least squares (OLS)
regression to project each BOLD signal time series onto the subspace
orthogonal to all potentially interfering effects. An anatomical component-
based noise correction procedure was implemented to identify spurious
effects (aCompCor; [27]). Factors identified as confounding effects for the
BOLD signal were estimated and removed separately for each voxel and
for each participant (see Supplemental Material for further details).

Data analysis
Sample characteristics were analyzed using χ2-tests for differences
between groups for dichotomous variables and one-way analyses of
variances (ANOVA) for continuous variables. We used multiple χ2-tests and
Tukey’s HSD Tests for post hoc comparison of single groups. We performed
all analyses in IBM SPSS Statistics 26 (significance level of 0.05).
We analyzed the rsFC of a priori selected brain regions in a ROI-to-ROI

approach. ROIs were implemented in CONN using the brainnetome atlas
[28] and the atlas of the basal ganglia (ATAG; [29]). Based on previous
findings [8, 10, 30–32], we selected the PAG, amygdala, ACC (divided into
dorsal, pregenual, and subgenual ACC), insula (divided into posterior and
anterior insula), hippocampus, thalamus, and prefrontal cortex (divided
into dorsomedial PFC [dmPFC], dorsolateral PFC [dlPFC], ventromedial PFC
[vmPFC], ventrolateral PFC [vlPFC], and orbitofrontal cortex [OFC]) as ROIs.
Regions were recorded separately for both hemispheres unilaterally.
Details of the ROI definition are provided in the Supplemental Material.

T. Langhammer et al.

2

Molecular Psychiatry

http://www.nitrc.org/projects/conn


ROI-to-ROI analyses were performed at the individual level in the CONN
toolbox. Temporal correlations of BOLD signals were calculated for all 378
pairwise ROI combinations (28 ROIs). Functional connectivity values were
calculated at the group level by calculating bivariate correlations between
ROIs (and then converted to Fishers Z correlations).
First, we ran two second-level categorical models: one with patient

groups with a primary diagnosis, another with patient groups regardless of
whether the diagnosis was a primary or a comorbid diagnosis. We
compared all patients with HC, and PD/AG, SAD, and SP separately with
HC. For direct comparisons between patient groups, see Supplemental
Material. One-way analyses of covariance were performed. Age, sex, and
scanner were entered as covariates of no interest.
Second, we examined the dimensional effect of symptom severity (SIGH-

A, CGI) on rsFC of all 378 ROI pairs using multiple regression analyses on
fixed-level other effects (sex, age, and scanner) within the combined
patient group and for individual AD using the PAS, LSAS, and DSM-5 SP.
Following the defensive system rationale that differentiates between
threat and fear, we additionally examined the associations between the
panic subscale and agoraphobic avoidance subscales and connectivity in
PD/AG patients [33].
Third, in a post hoc analysis, we examined the effect of maximum

anxiety levels during scanning for ROIs that were found to be significant in
the categorical model (primary disorder) using multiple regression analysis
(effect of state anxiety at fixed values for age, sex, and scanner).
The FDR algorithm of Benjamini & Hochberg [34] was used to control for

family-wise error rates, and a connection-level FDR-corrected p-value

(threshold p < 0.05) was calculated for each pairwise association between
ROIs [34].

RESULTS
Sample characteristics
Sample characteristics are shown in Table 1. Since we observed
differences in age and sex, these were included as covariates in
the fMRI analysis.

rsFC alterations as a function of anxiety phenotype
Categorical analysis using primary diagnosis. The combined
patient group exhibited increased positive connectivity between
the right thalamus and right posterior insula relative to HC.
PD/AG patients exhibited decreased positive connectivity

between the right subgenual ACC and the right dmPFC as well
as the right pregenual ACC and the right PAG when contrasted
with HC. Conversely, there was an increase in positive connectivity
throughout an extensive thalamo-cortical network, encompassing
the bilateral thalamus with the left amygdala, the right
hippocampus, and the right posterior insula as well as the right
thalamus with the left hippocampus and left posterior insula.
Compared to HC, SAD patients exhibited a decrease in negative

connectivity between the right OFC and the left posterior insula.

Fig. 1 Participant flowchart. 1for pilot patients (n= 31) in PROTECT-AD inclusion criteria were different with either SIGH-A or CGI being above
cut-off. For details see Supplemental Material.
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SP patients displayed no discernible differences when com-
pared to HC, as detailed in Table 2 and illustrated in Fig. 2a and b.

Categorical analysis using any diagnosis. When compared with
the categorical model focusing on the primary diagnosis, there
were subtle differences in the results. For PD/AG patients, there
was not a decrease in positive connectivity between the right
subgenual ACC and right dmPFC. Instead, there was an increase in
connectivity between the left thalamus, left posterior insula, and
left hippocampus. Findings for SAD and SP remained consistent,
as detailed in Table S2 of the Supplemental Material.

Dimensional analysis on symptom severity. There was no sig-
nificant correlation between symptom severity and rsFC in the
patient groups. For correlations within the patient groups
between significant connectivities in the categorical model and
disorder-specific symptom severity, please refer to the Supple-
mental Material Table S3.

Dimensional analysis on maximum state anxiety during scanning.
PD/AD patients exhibited heightened state anxiety during
scanning (refer to Fig. S2 in the Supplemental Material). To
distinguish between state anxiety and psychopathology, we
assessed the effects of maximum state anxiety in regions
impacted by diagnosis for each patient group. We did not identify
any significant associations that could account for the diagnosis-
specific observations (further details available in the Supplemental
Material).

DISCUSSION
Following the contemporary transdiagnostic and dimensional
approach in research-oriented classification systems, we studied
rsFC differences between HC and patients with PD/AG, SAD, and
SP, focusing on both diagnostic categories and symptom severity
dimensions. Our key findings are: (a) All patients compared to HCs
showed increased positive connectivity between the right
thalamus and the right posterior insula. Among patient groups,
PD/AG patients showed the most distinct connectivity changes,
especially increased connectivity between thalamo-limbic and
cortical regions and decreased connectivity between the ACC and
prefrontal regions and the PAG, whereas SAD patients only show
changes in OFC and insula connectivity and SP patients did not
show any changes; (b) these alterations were primarily associated
with the categorical diagnosis and disappeared in dimensional
models of symptom severity; (c) while PD/AG patients exhibited
heightened state anxiety during scans, this did not account for the
primary diagnosis variations. Observations suggest unique pat-
terns for each AD group, diverging from prevalent transdiagnostic
models.
The main finding across all disorders vs. HC demonstrated

increased positive connectivity between the right thalamus and
the right posterior insula. The thalamus serves as a critical relay
station for sensory information, while the insula is heavily involved
in interoceptive awareness—the processing of internal bodily
states [35, 36]. The increased connectivity between these regions
may suggest a heightened integration of sensory and interocep-
tive signals, which could contribute to the increased emotional
and autonomic responses observed in anxiety disorders [37]. This
connection could be indicative of enhanced interoceptive
processing, potentially leading to increased awareness of bodily
sensations and, consequently, autonomic symptoms such as
heightened heart rate and sweating. These autonomic symptoms
are commonly reported in various anxiety disorders, suggesting
that this connectivity pattern might underlie a shared neurobio-
logical mechanism contributing to the symptomatology across
different diagnostic categories.
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Regarding categorical differences between different ADs, only
the PD/AG group exhibited notable rsFC differences compared to
healthy controls. The functional anatomy of PD reveals an
extensive subcortical and cortical network related to defensive
reactions, highlighting areas such as the amygdala, hippocampus,
thalamus, PAG, and locus coeruleus [38, 39]. Dysfunctional
coordination between cortical (upstream) and brainstem (down-
stream) regions is believed to contribute to panic attacks [38]. PD/
AG patients exhibit altered top-down and bottom-up processing
dynamics in fear conditioning [40]. Both animal and human
research emphasizes the significance of midbrain areas, particu-
larly the PAG, in defensive reactions and PD [41]. Our study
supports this view, showing connectivity changes in this network,
including areas like the PAG, thalamus, amygdala, hippocampus,
insula, ACC, and dmPFC. While we observed increased positive
connectivity in limbic areas, there was a decrease between the
ACC and dmPFC, as well as the ACC and PAG, reinforcing the idea
of disrupted upstream and downstream processing. Although PD/
AG patients reported higher anxiety during scans, this did not
account for the observed results. Furthermore, no clear correlation
emerged between these network changes and symptom severity,
aligning with prior rsfMRI results [42]. However, earlier studies
might have been less definitive due to limited sample sizes (all
studies n < 55 per group; [5]). Our findings can be interpreted
within a framework where defensive responses vary from
prefrontal mechanisms, addressing potential threats, to midbrain
mechanisms addressing immediate ones [33]. Both are vital in
grasping PD’s etiopathogenesis [43, 44].
Regarding SAD specific alterations in intrinsic connectivity, only

the OFC showed impaired connectivity with the insula in SAD
patients in our study. Previous research on Neurofunctional
models for SAD, primarily derived from task-fMRI studies, indicates
alterations in fronto-limbic circuits with limbic hyperactivity and
reduced activity in cognitive control areas [45]. There is also
heightened activation in medial parietal and occipital regions,
crucial for discerning social cues [31, 45]. Alterations in
connectivity are also seen in fronto-amygdala, fronto-parietal,

and amygdala-temporal networks [11], with frontal regions
showing the most robust results. As such, present findings align
with this body of research.
Clinically, SAD is more strongly associated with cognitive

symptoms than autonomic symptoms in PD/AG. Symptoms like
anxiety from social evaluation and post-social interaction proces-
sing are pivotal in sustaining SAD, often leading to rumination and
preoccupation. The OFC plays a role in the higher-order
assessment of emotional and social signals. Mao et al. [46]
highlighted the mediating role of OFC-amygdala connectivity
between social anxiety and attention biases towards emotional
faces [46]. In line with our earlier research, where SAD comorbidity
in PD/AG altered fear conditioning and extinction patterns [47],
our latest rsfMRI findings further suggest unique neural markers
for these disorders.
Despite numerous task-based fMRI studies on SP [10, 48, 49], we

found only one study focusing on rsFC in such a patient group
[50]. Given the null outcomes in a robustly sampled study, this
disparity might point to a notable publication bias in this field. As
for the absent rsFC findings in SP, it is plausible that this patient
cohort has milder impairment, aligning more with the HC
phenotype than PD/AG patients do, leading to differing results
when compared to PD/AG. Subtle brain morphologic differences
have however recently been described in an ENIGMA meta-
analysis in SP [51].
Current research on disorder classification [4] focuses on

identifying commonalities between disorders, thus seeking
transdiagnostic explanations for psychopathology and unified
treatment protocols [52]. Present findings reveal notable differ-
ences between healthy controls and PD/AG patients, some
distinctiveness for SAD patients, and no differences for those
with SP (direct comparisons between patient groups also show
differences, see Supplemental Material). As thus, present results
challenge dimensional approaches to psychopathology to a
certain extent. However, more comprehensive research methods
like meta- or mega-analyses, especially from vast neuroimaging
consortiums like ENIGMA (https://enigma.ini.usc.edu/), which

Table 2. Differences in Connectivity (ANCOVA).

Connection Patients (m[sd]) Healthy controls F (df1,df2) η2 p

Z SE Z SE

All patients vs. HC

posterior Insula (l)—Thalamus (r) 0.18 0.02 0.11 0.02 15.44 (1,533) 0.03 .037

PD/AG vs HC

pregenual ACC (l)—PAG (r) 0.07 0.01 0.12 0.01 −12.32 (1,248) −0.05 .024

subgenual ACC (r)—dmPFC (r) 0.53 0.02 0.60 0.02 −10.89 (1,248) −0.05 .043

posterior Insula (r)—Thalamus (r) 0.22 0.02 0.11 0.02 18.84 (1,248) 0.07 0.008

posterior Insula (r)—Thalamus (l) 0.20 0.01 0.11 0.02 14.67 (1,248) 0.06 0.009

posterior Insula(l)—Thalamus (r) 0.21 0.02 0.11 0.02 15.60 (1,248) 0.06 0.008

Hippocampus (r)—Thalamus (r) 0.20 0.02 0.10 0.02 16.24 (1,248) 0.06 0.008

Hippocampus (r)—Thalamus (l) 0.21 0.02 0.11 0.02 14.59 (1,248) 0.06 0.009

Hippocampus (l)—Thalamus (r) 0.20 0.02 0.10 0.02 12.18 (1,248) 0.05 0.024

Amygdala (l)—Thalamus (l) 0.19 0.01 0.09 0.02 16.06 (1,248) 0.06 0.008

Amygdala (l)—Thalamus (r) 0.16 0.02 0.05 0.02 17.39 (1,248) 0.07 0.008

SAD vs. HC

posterior Insula (l)—OFC (r) −0.07 0.02 −0.16 0.02 18.83 (1,189) 0.09 0.009

SP vs. HC

No significant findings

Pairs of ROIs that differed between diagnostic groups. Z—Fishers-Z transformed correlation, SE—standard error, F—F-statistic, η2—effect size, p—significance
level, (r)= right hemisphere, (l)= left hemisphere.
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Fig. 2 Differences in connectivity as a function of primary diagnosis. a Glass brain with increased connectivity in red and decreased
connectivity in blue compared to HC and connectome rings with increased connectivity in red and decreased connectivity in blue compared
to HC. b Functional connectivity values. FISHERS-Z transformed correlations as connectivity measures. * for significant connection-level FDR-
corrected differences compared to healthy controls. (r)= right hemisphere; (l)= left hemisphere; p INS posterior insula; THAL Thalamus; pre
ACC pregenual anterior cingulate cortex; AMY amygdala; HIP hippocampus; PAG periaqueductal gray; dmPFC dorsolateral medial prefrontal
cortex; sub ACC subgenual anterior cingulate cortex; OFC orbitofrontal cortex.
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aggregates previously unreported data, should be explored for a
deeper understanding of this issue [51].
While our study provides valuable insights into the rsFC

differences between patient groups and healthy controls, it is
important to further discuss the results of the dimensional
analyses testing for associations between symptom severity and
connectivity within the patient groups. Despite expectations that
symptom severity would correlate with specific patterns of
connectivity alterations, findings did not yield statistically
significant results in this regard. This null finding challenges the
assumption that rsFC alterations directly correspond to symptom
severity levels within each anxiety disorder group.
Several factors may contribute to this lack of association. Firstly,

it is possible that the dimensional analysis approach utilized in our
study was not sensitive enough to detect subtle variations in
connectivity associated with different levels of symptom severity.
Our sample consists of clinical anxiety disorders and healthy
controls and therefore has a bimodal distribution. This is also the
reason why we investigated correlations only within the patient
groups, but not across patients and controls which might have
yielded spurious associations due to the bimodal distribution.
Collecting a sample of healthy, subclinical, and clinically significant
presentations of anxiety might help to investigate the full range of
dimensional anxiety. Alternatively, the complexity of anxiety
disorders, characterized by heterogeneity in symptom presenta-
tion and underlying neurobiological mechanisms, may obscure
direct relationships between symptom severity and rsFC.

Strength and limitations
Limitations encompass comorbidity, ongoing psychotropic medica-
tion, and excluded diagnostic groups related to ADs. We accounted
for comorbidity by including the presence of any AD diagnosis in our
analyses. Incorporating disorders like generalized anxiety disorder,
obsessive-compulsive disorder, or posttraumatic stress disorder
would offer a wider transdiagnostic view. Our focus was on ADs
and healthy controls, but direct inter-disorder comparisons would
further highlight specific signatures (see Supplemental Material). ROI
selection prioritized functional associations over empirical anatomical
distinctions. Using the latter would have provided a more detailed
perspective with smaller ROIs. However, we believe this approach
would have complicated clinical interpretation.
Despite these challenges, the absence of significant associations

between symptom severity and rsFC highlights the need for
further research to elucidate the complex interplay between
neural connectivity patterns and different degrees of severity
along a dimensional spectrum of anxiety. Future studies employ-
ing more refined analytical techniques, larger sample sizes,
longitudinal designs, and epidemiological or enriched samples
to reflect the full spectrum of anxiety severity (from low levels to
subclinical to clinical manifestations) may provide a clearer
understanding of the relationship between symptom severity
and connectivity alterations, ultimately informing more targeted
approaches to diagnosis and treatment.

CONCLUSION
Contemporary research-oriented classifications favor a transdiag-
nostic and dimensional approach to mental disorders, including
AD [4]. We investigated neural signatures of intrinsic functional
connectivity in various ADs using rsfMRI to identify and compare
differences to HCs. Findings revealed distinct rsFC changes among
disorders, notably in PD/AG and SAD patients, challenging the
assumption of broadly shared common factors. Pooling different
AD diagnoses might overshadow information for specific disease
models. More studies are needed to validate rsFC as a marker for
classification and a theranostic marker for neuroplastic changes
and response to treatment, paving the way for personalized,
neuroscience-informed treatments.

Our results underscore categorical differences between various
anxiety disorders. On one hand, this challenges transdiagnostic
considerations. On the other hand, the results can be interpreted
as complementary. Continuing to adopt a transdiagnostic
perspective regarding mental disorders in general does not
preclude individual differences that accumulate within groups.
From a practical view, the state-of-the-art treatment involves
exposure therapy, which is tailored to the respective anxiety
disorder and its fearful expectancies. Even in broader evidence-
based transdiagnostic approaches [53] of CBT, a clinician cannot
avoid addressing the specific focus of anxiety which consequently
includes disorder-specific components to a certain extent.
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